VEGF-A and neuropilin 1 (NRP1) shape axon projections in the developing CNS via dual roles in neurons and blood vessels
نویسندگان
چکیده
Visual information is relayed from the eye to the brain via retinal ganglion cell (RGC) axons. Mice lacking NRP1 or NRP1-binding VEGF-A isoforms have defective RGC axon organisation alongside brain vascular defects. It is not known whether axonal defects are caused exclusively by defective VEGF-A signalling in RGCs or are exacerbated by abnormal vascular morphology. Targeted NRP1 ablation in RGCs with a Brn3bCre knock-in allele reduced axonal midline crossing at the optic chiasm and optic tract fasciculation. In contrast, Tie2-Cre-mediated endothelial NRP1 ablation induced axon exclusion zones in the optic tracts without impairing axon crossing. Similar defects were observed in Vegfa120/120 and Vegfa188/188 mice, which have vascular defects as a result of their expression of single VEGF-A isoforms. Ectopic midline vascularisation in endothelial Nrp1 and Vegfa188/188 mutants caused additional axonal exclusion zones within the chiasm. As in vitro and in vivo assays demonstrated that vessels do not repel axons, abnormally large or ectopically positioned vessels are likely to present physical obstacles to axon growth. We conclude that proper axonal wiring during brain development depends on the precise molecular control of neurovascular co-patterning.
منابع مشابه
Neuropilin ligands in vascular and neuronal patterning.
Blood vessels and neurons share guidance cues and cell-surface receptors to control their behaviour during embryogenesis. The transmembrane protein NRP1 (neuropilin 1) is present on both blood vessels and nerves and binds two structurally diverse ligands, the class 3 semaphorin SEMA3A and an isoform of the vascular endothelial growth factor VEGF-A termed VEGF(165) (VEGF(164) in mice). In vitro,...
متن کاملNeuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization.
Vascular endothelial growth factor (VEGF)-A regulates vascular development and angiogenesis. VEGF isoforms differ in ability to bind coreceptors heparan sulfate (HS) and neuropilin-1 (NRP1). We used VEGF-A165 (which binds HS and NRP1), VEGF-A121 (binds neither HS nor NRP1), and parapoxvirus VEGF-E-NZ2 (binds NRP1 but not HS) to investigate the role of NRP1 in organization of endothelial cells i...
متن کاملHow neuropilin-1 regulates receptor tyrosine kinase signalling: the knowns and known unknowns.
Essential roles of NRP1 (neuropilin-1) in cardiovascular development and in neuronal axon targeting during embryogenesis are thought to be mediated primarily through binding of NRP1 to two unrelated types of ligands: the VEGF (vascular endothelial growth factor) family of angiogenic cytokines in the endothelium, and the class 3 semaphorins in neurons. A widely accepted mechanism for the role of...
متن کاملNeuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish.
Neuropilin-1 (NRP1) is a cell-surface receptor for both vascular endothelial growth factor(165) (VEGF(165)) and class 3 semaphorins that is expressed by neurons and endothelial cells. NRP1 is required for normal developmental angiogenesis in mice. The zebrafish is an excellent system for analyzing vascular development. Zebrafish intersegmental vessels correspond to mammalian capillary sprouts, ...
متن کاملNeuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding
During development, tissue repair, and tumor growth, most blood vessel networks are generated through angiogenesis. Vascular endothelial growth factor (VEGF) is a key regulator of this process and currently both VEGF and its receptors, VEGFR1, VEGFR2, and Neuropilin1 (NRP1), are targeted in therapeutic strategies for vascular disease and cancer. NRP1 is essential for vascular morphogenesis, but...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 144 شماره
صفحات -
تاریخ انتشار 2017